Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a).

نویسندگان

  • Martin Kosar
  • Jirina Bartkova
  • Sona Hubackova
  • Zdenek Hodny
  • Jiri Lukas
  • Jiri Bartek
چکیده

Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by DAPI and enriched for histone modifications including lysine9-trimethylated histone H3. While cellular senescence occurs also in premalignant human lesions, it is unclear how universal is SAHF formation among various cell types, under diverse stresses, and whether SAHF occur in vivo. Here, we report that human primary fibroblasts (BJ and MRC-5) and primary keratinocytes undergoing replicative senescence, or premature senescence induced by oncogenic H-Ras, diverse chemotherapeutics and bacterial cytolethal distending toxin, show differential capacity to form SAHF. Whereas all tested cell types formed SAHF in response to activated H-Ras, only MRC-5, but not BJ fibroblasts or keratinocytes, formed SAHF under senescence induced by etoposide, doxorubicin, hydroxyurea, bacterial intoxication or telomere attrition. In addition, DAPI-defined SAHF were detected on paraffin sections of Ras-transformed cultured fibroblasts, but not human lesions at various stages of tumorigenesis. Overall, our results indicate that unlike the widely present DNA damage response marker γH2AX, SAHF is not a common feature of cellular senescence. Whereas SAHF formation is shared by diverse cultured cell types under oncogenic stress, SAHF are cell-type-restricted under genotoxin-induced and replicative senescence. Furthermore, while the DNA/DAPI-defined SAHF formation in cultured cells parallels enhanced expression of p16(ink4a) , such 'prototypic' SAHF are not observed in tissues, including premalignant lesions, irrespective of enhanced p16(ink4a) and other features of cellular senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p16INK4a-induced senescence is disabled by melanoma-associated mutations

The p16(INK4a)-Rb tumour suppressor pathway is required for the initiation and maintenance of cellular senescence, a state of permanent growth arrest that acts as a natural barrier against cancer progression. Senescence can be overcome if the pathway is not fully engaged, and this may occur when p16(INK4a) is inactivated. p16(INK4a) is frequently altered in human cancer and germline mutations a...

متن کامل

The Effect of Eight Weeks of Aerobic Exercise on the Expression of Senescence Proteins P53 and P16 in Pancreatic Tissue of Diabetic Mice

Background: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress and increases insulin resistance and also increases in p53 and p16 beta cells, leading to the induction of senescence in pancreatic insulin-secreting cells. The aim of this study was the effect of eight weeks of aerobic exercise on the expression of senescence proteins P53 and P16 in the ...

متن کامل

A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation

Cellular senescence is a stable state of proliferative arrest that provides a barrier to malignant transformation and contributes to the antitumor activity of certain chemotherapies. Senescent cells can accumulate senescence-associated heterochromatic foci (SAHFs), which may provide a chromatin buffer that prevents activation of proliferation-associated genes by mitogenic transcription factors....

متن کامل

Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi

The retinoblastoma (RB)/p16(INK4a) pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently det...

متن کامل

MYC synergizes with activated BRAFV600E in mouse lung tumor development by suppressing senescence.

The activated RAS/RAF cascade plays a crucial role in lung cancer, but is also known to induce cellular senescence, a major barrier imposed on tumor cells early in tumorigenesis. MYC is a key factor in suppression of RAS/BRAF(V600E)-induced senescence in vitro. However, it is still unclear whether MYC has the same role during tumor development in vivo. Using a conditional, compound knock-in mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell cycle

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2011